Acetylcholinesterase, the key enzyme, terminates the impulse transmission in numerous cholinergic pathways by rapid hydrolysis of the neurotransmitter acetylcholine. The enzyme inactivation by cholinesterase inhibitors increases the concentration of acetylcholine in the synapse eliciting neurohumoral transmission both in the central and peripheral nervous system. Several synthetic cholinesterase inhibitors like Tacrine, Donepezil and Galantamine were in existence with unpleasant side effects like weird dreams, muscle pain and gastrointestinal disturbances as well. Medicinal plants are found to be the valuable source of acetylcholinesterase inhibitors with minimal side effects. Many medicinal plants have been used traditionally for the treatment of various neurodegenerative disorders like Alzheimer’s disease, dementia and cognitive impairments. The aim of the present review is to provide a comprehensive literature survey of plants that have been tested for acetylcholinesterase inhibitory activity along with other numerous phytoconstituents, which may aid researchers in their study of natural products for management of number of central nervous system disorders.

Keywords: Acetylcholinesterase inhibitors, acetylcholine, medicinal plants, neurodegenerative disorders, cognitive impairments.

INTRODUCTION

The cholinergic hypothesis implies that the Acetylcholine (ACh), a neurotransmitter synthesized in cholinergic nerve terminals play an important role in learning, memory and mood. ACh, increases the synaptic transmission in neuromuscular junction of central nervous system (CNS) thereby regulates its functions. The enzyme acetylcholinesterase (AChE) inhibits the ACh mediated neuronal impulse transmission by triggering fast hydrolysis of ACh in the cholinergic nerve endings. The decreased level of ACh in the cortex region of brain results in insufficient cholinergic functions originating many pathological features in the CNS disorders like Alzheimer’s disease and dementia. AChE inhibitors deactivate AChE and increase the availability and duration of action of ACh at the synaptic nerve terminals.

Acetylcholine

Acetylcholine is discovered as the first neurotransmitter, an organic molecule released at nerve endings of all autonomic ganglia and at many synapses in the central nervous system. In the peripheral nervous system, ACh is responsible for skeletal muscle movement. The smooth and cardiac muscle movement is also regulated by ACh. In the central nervous system ACh play a chief role in memory and cognition. ACh is synthesized from choline and acetyl coenzyme A by the biosynthetic enzyme Choline acetyltransferase (ChAT) in the cytosol of several cholinergic neurons. From the cytosol, ACh is transported by the vesicular ACh transporter (an energy - dependent pump), actively and stored as the synaptic vesicle in the presynaptic terminal. The arrival of an action potential at the nerve terminals causes opening of voltage sensitive Ca²⁺ channels present in presynaptic membrane thereby permitting an influx of Ca²⁺ into the terminals. The released Ca²⁺ thus facilitates the fusion of synaptic vesicles triggering the exocytosis of ACh from the storage vesicles into the synaptic cleft at the neuronal junction. Following its release from the nerve terminal, ACh diffuses across the synaptic cleft and bind to the receptors on the post synaptic terminal membrane. Upon activation of the receptors ACh elicits several cellular responses. The signal transmission effect of ACh is rapidly terminated by the enzyme AChE located on the post – synaptic membrane, by hydrolyzing ACh into acetate and choline. The liberated choline is transported back into the nerve terminals by the high – affinity choline transporter and used for resynthesis of ACh by combining with acetyl coenzyme A in the presence of the enzyme ChAT. Cholinergic function of ACh is required for the short term memory function, thus its deficiency may leads to short term memory deficit, a central nervous system disorder. The drugs that are enhancing and inhibiting cholinergic transmission are shown in table 1 and 2, respectively.

TABLE 1: DRUGS THAT ENHANCE CHOLINERGIC TRANSMISSION

<table>
<thead>
<tr>
<th>Mode of Action</th>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicotinic agonists</td>
<td>Nicotine</td>
</tr>
<tr>
<td>Muscarinic agonists</td>
<td>Bethanechol</td>
</tr>
<tr>
<td>Cholinesterase inhibitor</td>
<td>Physostigmine</td>
</tr>
</tbody>
</table>
Acetylcholinesterase Enzyme

AChE is a membrane-bound enzyme belonging to the family of serine hydrolase present in neuromuscular junction and cholinergic synapses. AChE inhibits the synaptic transmission of cholinergic nerves by rapid hydrolysis of Ach. The enzyme AChE is a protein complex of αβ hydrolase fold type with an overall ellipsoid shape having a deep groove of above 20 Å deep, called the gorge. The “peripheral site” of the outer rim is the initial binding site of Ach, which then migrates to the bottom where hydrolysis takes place. The four essential sub sites of gorge are the esteric site, the oxanion hole, anionic site and the acyl pocket. The catalytic triad Ser200 Thr205 and His440 of the esteric site promotes the nuclephilicity of catalytic serine. The hydrogen bond between His and Ser is strong which improves the ability of Ser for a nucleophilic attack on the substrate. The transition state of histidine cation is stabilized by Glutamate. During this catalytic process, the tetrahedral intermediate of ACh thus formed is stabilized by the hydrogen bond donors containing Gly 118, Gly 119 and Ala 201 residues of the “oxanion hole” (OH). The choline binding site is the “anionic subsite” having Trp84, Phe330 and Glu199, which upon π-cation interactions binds to quaternary ammonium ligands of Ach. The dimension of the substrates, entering the active site is controlled by the acyl binding pocket having Phe288 and Phe290. The three existing isoforms of AChE are G1 in brain; G4 in brain and the neuromuscular endplate and G2 in skeletal muscles and blood forming cells. The single AChE molecule can hydrolyze nearly 2.4×10⁹ molecules of Ach per second. It is much more important to inhibit AChE both medically and toxicologically. The well thorough knowledge of AChE and about its structure is essential for finding out the mechanism of action underlying the pharmacological and toxicological action of certain AChE inhibitors for the purpose of rational drug design.

Acetylcholinesterase Inhibitors

AChE inhibitors or anti-cholinesterases (anti-ChE) promotes the accumulation of Ach in the vicinity of cholinergic nerve terminals and are potentially capable of producing effects equivalent to excessive stimulation of cholinergic receptors throughout the central nervous system. The anti-ChE agents have received extensive application as toxic agents, in the form of agricultural insecticides, pesticides and potential chemical warfare “nerves gases”. Nervetheless, several compounds of this class are widely used therapeutically; others that cross the blood-brain barrier have been approved or are in clinical trial for the treatment of neurodegenerative disorders. According to the mode of action, AChE inhibitors are divided in to two main types, reversible and irreversible.

Reversible Acetylcholinesterase Inhibitors

The activities of the enzyme AChE are manipulated pharmacologically by reversible AChE inhibitors. These inhibitors include compounds like carbamate, quaternary or tertiary ammonium group that are applied in the diagnostic and/or treatment of various neurodegenerative disorders, as well as antidote to anticholinergic overdoses. Reversible inhibitors are further divided into competitive enzyme inhibitors and substrate inhibitors. Examples of reversible cholinesterase inhibitors includes, Carbamates like Physostigmine, Neostigmine, Pyridostigmine, Edrophonium, Rivastigmine, Donepezil, Galanthamine and Acridine derivative – Tacrine. The novel donepezil-tacrine and o xo isoaporphine-tacrine congeners hybrid related derivatives, coumarin and hyperzine A derivatives are able to bind simultaneously to both peripheral and catalytic sites of the enzyme and thus exhibits high AChE inhibitory activity with IC₅₀ value in the nanomolar range. In addition, the newly synthesized symmetrical bispyridinium and carbamate anti-AChE compounds can inhibit the enzyme even in micromolar concentrations, making them the novel candidates for the treatment of many CNS disorders.

Irreversible Acetylcholinesterase Inhibitors

Organophosphorus compounds (OPs) are esters or thiols derived from phosphonic, phosphonic, phosphinic or phosphoramic acid and the compounds includes organophosphorus insecticides like parathion, malathion, chlorpyrifos, diazinon, dichlorvos, phosmet, fenitrothion, tetrachlorvinphos, azinphos methyl, pirimiphos-methyl, dimethoate, phoslalone and organophosphorus nerve gases like tabun, sarin, soman, cyclosarin. The organophosphates acts by non-reversible phosphorylation of esteras in the central nervous system and their toxic effects are due to irreversible inactivation of AChE. The OPs and ACh are substrate analogues and thus OPs enters the active site like natural substrate and binds covalently to the hydroxyl group of serine, since the phosphorylated enzyme cannot hydrolyze the neurotransmitter, leads to accumulation of Ach in the synaptic cleft results in neurotransmission.

The biochemical properties and physiological role of AChE is found to be unique, made it an attractive topic of intensive investigations throughout the world. The research is under progress to discover new AChE inhibitors from both synthetic and natural origin. This review is highly focused on certain newly existing natural bioactive compounds with AChE inhibitory activity along with a brief discussion about the traditional AChE inhibitors from natural source that are already in use.

ACETYLCOLINESTERASE INHIBITORS FROM PLANTS

The history of drug discovery shown that the plants are being an important sources in the search for new bioactive compounds with AChE inhibitory property. Based on the several neuropharmacological activities including cognitive repair that have been documented in folk medicine, the following plants have been described as potential leads for the development of new drugs for CNS disorders. The list of some plants that have been reported to exhibit AChE inhibitor activity are also been given in table 3.
Vanda roxburghii

The chloroform extract of Vanda roxburghii (Orchidaceae) acts as an important source of polyphenols with antioxidant and choleresterase inhibitory activity. The bioassay-guided separation using column chromatography led to the isolation of gigantol, a bibenzyl stilbinoid as a phenolic component from the active subfraction. Due to its phenolic compounds Vanda roxburghii, possess a combination of antioxidant properties and choleresterase inhibitory activities supported its traditional utilization in Bangladesh in the treatment of Alzheimer’s disease.

Pluchea indica

In a study performed by Noridayu et.al., the methanolic extract of stem of Pluchea indica (Asteraceae) and hexane extract of both the leaves and stems were found to inhibit acetylcholinesterase potentially. Its methanolic extract of leaves also showed highest antioxidant activity. This study revealed that the Pluchea indica may provide a potential source of bioactive compounds and thus may be beneficial to human health.

Jatropha gossypifolia

Jatropha gossypifolia belonging to the family Euphorbiaceae, shown to have a potent acetylcholinesterase inhibitory activity was screened by Ellman’s assay method. The dichloromethane fraction of root, methanol fraction of root, and dichloromethane fraction of leaves showed significant acetylcholinesterase inhibitory activity when compared with the standard eserine. The dichloromethane fraction of root contains butyrylcholinesterase (BuChE) inhibitory action as well. This study thus explained about the significant AChE and BuChE inhibitory action of the plant Jatropha gossypifolia, supporting its traditional use for the management of Neurodegenerative disorders like Alzheimer’s disease.

Arnica montana

Arnica montana belongs to family Asteraceae is a valuable medicinal plant for its strong anti-inflammatory activity. Its main application is for treatment of injuries like sprains, bruises and hematomas. The acetylcholinesterase inhibitory potential of Arnica montana was assessed quantitatively by modified Ellman’s colorimetric method. The result demonstrated that Arnica montana extract has strong antioxidant activity and moderate AChE inhibitory ability.

Agrimonia pilosa

In a study performed by Mankil jung et.al., an ethyl acetate extract of whole plants of Agrimonia pilosa (Rosaceae) yielded four flavonol compounds as tilisrose, 3-methoxy quercetin, quercitrin and quercetin. All the four flavonoids shown significant inhibitory effect on AChE. The fourth flavonoid – quercetin was twice as active against AChE, shown more anti-amnesic activity than the clinically useful tacrine. Thus quercetin or its derivatives might have therapeutic potential for the treatment of Alzheimer’s disease. The leaves and stems of the plant also shown various pharmacological activities such as anti-tumour, analgesic, anti-bacterial, anti-inflammatory, hypoglycemic and vasoconstrictor activities. The plant also cures abdominal pain, sore throat, headaches, bloody and mucoid dysentery and heat stroke.

Beilschmiedia species

Among all the three species of Beilschmiedia which are Beilschmiedia glabra, B. madang and B. pulverulenta belonging to the family Lauraceae, the methanolic extract of stem bark of B. madang showed highest AChE inhibitory activity with percentage inhibition of 62.8%, which may be due to their alkaloidal content as its phytoconstituents. The extract also exhibited highest free radical scavenging activity (IC50 of 63.2 µg/ml) and total phenolic content (163.4 mg GA/g) assay.

Emex spinosa

Emex spinosa (Polygonaceae), used as a purgative, diuretic, stomach disorders, dyspepsia and colic in traditional medicine. The maximal inhibitory effect of the plant was found at 400 µg/ml by 81.92%. The plant also exhibited the most chelation and reduction capability which confirm its antioxidant property.

Citrullus colocynthis

Citrullus colocynthis belongs to the family Cucurbitaceae is traditionally used to treat constipation, diabetes, edema, fever, jaundice, bacterial infection, cancer, etc. The plant was screened for its anticholinesterase activity and found that it inhibits acetylcholine iodide hydrolysis at 400 µg/ml by 83.54% to a
maximum. The plant also contains greater potential of antioxidant activity that may help in alleviating patients suffering from Alzheimer’s disease.

Magnolia officinalis
The plant bark of Magnolia officinalis belongs to the family Magnoliaceae, is used as a memory enhancing agent for the treatment of neurosis, anxiety, dementia, stroke, etc., in Chinese medicine. The ethanol extract of the bark of the plant inhibits the cognitive impairment induced by scopolamine by inhibiting AChE. The extract contains magnolol and honokiol as constituents that are responsible for antioxidant activity both in vitro and in vivo.

Thymbra capitata
The essential oils and decoction waters of Thymbra capitata (Lauriaceae) are widely used in Indian traditional system of medicines like Ayurveda, Unani, Siddha. It is also used to treat various CNS disorders like depression in Chinese medicine. The α and β-asarone are the major constituents present in *Thymbra capitata*, inhibits AChE. The plant also shows antioxidant, anti-spasmodic, cardiovascular hypolipidemic, immunosuppressive, anti-inflammatory, cytoprotective, anti-diarrhoeal, antihelmintic and antimicrobial activities.

Acorus calamus
Acorus calamus (Acoraceae) is widely used in Indian traditional system of medicines like Ayurveda, Unani, Siddha. It is also used to treat various CNS disorders like depression in Chinese medicine. The α and β-asarone are the major constituents present in *Acorus calamus*, inhibits AChE. The plant also shows antioxidant, anti-spasmodic, cardiovascular hypolipidemic, immunosuppressive, anti-inflammatory, cytoprotective, anti-diarrhoeal, antihelmintic and antimicrobial activities.

Melissa officinalis
The traditional use of *Melissa officinalis* (lemon balm), Lamiaceae, was to sharpen memory. It also improves cognitive decline as well as the mood for Alzheimer’s patients, temporarily. Another study revealed that the plant due to its AChE inhibitory ability and its antioxidant activity, helps in prevention and treatment of Alzheimer’s disease.

Lepidium meyenii
Lepidium meyenii (Maca) belongs to Brassicaceae, the plant in the Andes of Peru, able to survive even in the undesirable condition of high altitude, burning sun, hot days, cold nights and dry winds. The study done by Rubin J et.al. revealed that the aqueous and hydroalcoholic extracts of black maca improved scopolamine-induced memory impairment in mice by reducing brain AChE activity by 45%. Rubin J et.al. also studied that Maca by its antioxidant and AChE inhibitory activities improved experimental memory impairment induced by ovarectomy in mice.

Lycopodium serratum
Lycopodium serratum belonging to the family Lycopodiaceae yields an alkaloid Huperzine A, a potential therapeutic agent used in the therapy of Alzheimer’s disease. Huperzine A, has been used traditionally to treat fever, inflammation, blood disorders and schizophrenia. It is a potent, reversible, AChE inhibitor whose potency is similar to that of physostigmine, galantamine, donepezil and tacrine. Huperzine A also confers certain protective effects such as regulating amyloid precursor protein metabolism, anti-inflammatory as well as apoptosis and mitochondrial dysfunction.

CONCLUSION
The known AChE inhibitors that are available in the market for the treatment of various neurodegenerative disorders are with several side effects such as high toxicity, low bioavailability, short duration of action and narrow therapeutic effects. The need arises for the development of new AChE inhibitors with less toxicity and more potent activity. Nature provides large number of bioactive compounds with greater AChE inhibitory potential those are desirable for human health. This review may provide information about the plants with AChE inhibitory activity which may contribute to the design of new pharmaceuticals from natural origin with minimal side effects.

REFERENCES

51. Rajput SB, Tonge MB, Karuppayil SM. An overview on traditional uses and pharmacological profile of Acorus calamus Linn. (Sweet flag) and other Acorus species. Phytomedicine 2014;21(3):268-76.

How to cite this article:
http://dx.doi.org/10.7897/2277-4572.07489

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: JPSI is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. JPSI cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of JPSI editor or editorial board members.